S
. i

& . - - -
) o -
o _UNCLASSIFIED gl itk ot .
;. SECURITY CLASSIFICATION OF THIS PAGE .
:" pus—
) RT DOCUMENTATION PAGE
W 1b, RESTAICTIVE MARKINGS
7 AD-A198 228 ‘
,"’ .2_: 3. DISTRIBUTION/AVAILABILITY OF REPORT
.
W ———————
:‘ -.":JECLASSIFOCATION/DOWNGRADING SCHEDULE \D. .
E 1.5h7 by pre (im f p KD
'-' 4. PERFCRAMING ORGANIZATION REPQRT NUMBERIS) S. MONITORING ORGANIZATION REPORT NUMBER(S)
»’ . - <
K.w | Technical Report # 4 AFOSR-TR- 88-08 42
! 6a. NAME OF PERFORAMING ORGANIZATION b, OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
n (Il applicabie)
W Texas AGM University Air Force Office of Scientific Research
R\ f6c. ACORESS (City. State and ZIP Code) 7. ADDRESS (City. State and ZIP Code)
- § College Station, TX 77853
( Yne. o PO,
‘ -': Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
) | omcamzarion o +PEIR-5/79620-85-C-0144
#% JAFOSR ,
o 8c. ADDRAESS (City. State and ZIP Code) /\[‘) \L\ 4 @) 10. SOURCE OF FUNDING NOS.
R )
- PROGRAM PROJECT TASK WORK UNIT
® | Bolling Air Force Base ELEMENT NO. NO. NO. NO.

< {Washington, DC 20332

‘;'3 11. TITLE (Inciude Security Classification ZQ/ /d;f é?m %

~ RVARJANCE FUNCTION ESTIMATION IN REGRESSION: {E_LEEECT OF ESTIMATING THE MEAN

:. 12. PEASONAL AUTHORI(S}

o Hall, Peter and Carroll, R.J,

- 13a. TYPE QF REPQAT 13b. TIME COVERED 14. DATE OF REPOAT (Yr, Mo, Day) 15. PAGE COQUNT
% taren] T«?af‘na/ raom _8/87 to_8/88 15
: 16, SUPPLEMENTARY NOTATION ‘
W '-(',--' PRI c =

b, L -

-~ } 17. COSAT!I CODES 18. SUBJECT TERMS /Continue on reverse if necessary and identify by block number)

4 }—€ep - omoue sus R heteroscedasticity, nonparametric regression, rates of
' convergence, variance functions

; -; 19. ABSTRACT (Continue on reverse if necessary and identify by black number)

-~ We consider estimation of a variance function g in regression problems. Such estimation

requires simultaneous estimation of the mean function f. We obtain sharp results on

o . .

N the extent to which the smoothness of f influences best rates of convergence. for

estimating g. For example, in nonparametric regression with two derivatives on g,
*classical' rates of convergence are possible if and only if the unknown f satisfies a
Lipschitz condition of order } or more. If a parametric model is known for g, then g
may be estimated n? ]

ool
‘ »

g

- consistently if and only if f is Lipschitz of order ; or more.

A . N .

PY Optimal rates of iconvergence are attained by kernel estimators. ( e ) JA—
o :
s -
e V/
] -
@ [20 0STRIBUTION/AVAILABILITY OF ABSTRACT 21. AGSTRACT SECURITY CLASSIFICATIO
& Ty ;

¢ Runcrassirieo/untimiteo 8 same as aer. O oTic usens O ‘P‘ E

¢ i
b [22a NAME OF RESPONSIBLE INOIVIDUAL 22b. TELEPHOR 22¢. OFFICE SYMBOL
::. o . * {Include Area Cods)

Majicr Brian Wnodruff (202) 767-5026 NM

® DD FORM 1473, 83 APR €DITION OF 1 JAN 73 IS OBSOLETE. - UNCLASS]FIED
W I 8 8 8 2 5 U 9 6 SECURITY CLASSIFICATION OF THIS PAGE
, ’
et "-(\\.' ! O X O ‘
‘::.fl,.. W L ,. "l' :.q‘ ;:,. .'b D |'l.q'l‘:' "Q, 2% i'* rﬁ 0.}.. !,\ sf'. a0, OV n,. l,o W 0,-'\? :' nhy Q‘u&t.u oy \'u Y .'a“'o o n"'n :




P

ks AFOSR.TR- 8 8- 0 842

R
S&;‘ Variance Function Estimation in Regression:
’??‘3 The Effect of Estimating the Mean

Technical Report #4

i e
XL

e
»
-

T

ﬁﬂq Peter Hall and R. J. Carroll

e Accession For
‘ v 3

:JE' TNTIS GRAML ‘%g
o DIIC TAB

% Unannounesd O
' Just12108t 100 et

; By
"?3.. pistribution/ — Tﬁ 2
W
. Availadility Codes
.0!:'0 ~— " |Avail and/or ELECTE

pist Special

00 0 QO UEECTII M LK R RO
2 ‘ l’:‘.":,‘,’ : !l’:?:‘k‘?a?i‘tet'cel'ﬁ "?l‘;.»"H"’O".ts"lt"? At el g



Variance Function Estimation in Regression:

The Effect of Estimating the Mean

Peter Hall R.J. Carroll

4, Department of Statistics Department of Statistics

\ B Australian National University Texas A & M University
o Canberra ACT 2601 College Station, TX 77843
£ Australia USA

SUMMARY

We consider estimation of a variance function g in regression problems. Such estima-

% tion requires simultaneous estimation of the mean function f. We obtain sharp results on
e
- the extent to which the smoothness of f influences best rates of convergence for estimating

g. For example, in nonparametric regression with two derivatives on g, “classical” rates

;:::t. of convergence are possible if and only if the unknown'f satisfies a Lipschitz condition
: of order % or more. If a parametric model is known for g, then ¢ may be estimated nd-
{ "; consistently if and only if f is Lipschitz of order 1 or more. Optimal rates of convergence
; -.: are attained by kernel estimators. |

Keywords: Heteroscedasticity; Nonparametric Regression; Rates of Convergence; Vanance

Functions.
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1. INTRODUCTION

Consider a heteroscedastic regression problem of the form
: },l=f(:l)+g(rl)§el’ 1<it<n, (11)

where the design variables z; may be either regularly or randomly spaced, and where
the ¢;’s are independent with zero mean and unit variance. Estimation of the variance
function ¢ is important in many contexts. Besides the classic need to estimate variance so
.as to compute weighted least squares estimates of the mean function f, variance function
X estimates are needed in quality control (Box & Ramirez, 1987); immunoassay (Butt, 1984);
prediction, where knowledge of g is required to supply confidence intervals for f (Carroll,
! 1987); calibration (Watters, Spiegelman & Carroll, 1987); and the estimation of detection
limits (Carroll, Davidson & Smith, 1987). These applications are discussed in detail by
Carroll & Ruppert (1988). In the present paper we provide a concise description of the
effect which not knowing f has on estimation of g.

The results are curious and unexpected. For example, if f is not known parametrically
but has at least half a derivative (i.e. satisfies a Lipschitz condition of order 3 or more),
then g can be estimated with an accuracy which would be optimal if f were completely
[ known. This result applies to problems where g is known parametrically, and also to
problems where g must be estimated nonparametrically. However, the result fails if f is
so rough that it does not have half a derivative. There, the roughness of f completely
determines the convergence rate if ¢ has known parametric form, and influences the rate
if g is known nonparametrically. These remarks apply to optimal estimators of g, as well
{ as to kernel estimators. We show that kernel estimators achieve best possible rates of

convergence.

In more detail, the fastest achievable L? rate of convergence is

. max(n~ 22/ p 1/3000)) (1.2) 1
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“ss 4,5 if f has v, derivatives and g has v, derivatives. If »; > 1, this equals n=2¥2/(2s43) and so
‘_ does not depend on v,;. Rates in the case where g is known parametrically may be obtained
é:ia. . by taking ¥; = oo in (1.2), in which event (1.2) becomes max(n~!,n~4*1/(2:1+1)) The
’ .
'\‘::. latter equals =1 if 1y > 1.
)
:“’%" Section 2 presents these conclusions in detail for the case where design points z; in
K
ﬁ% " (1.1) are regularly spaced. Section 3 outlines analogous results for the case of random
b)
Sy
e designs.
e
g - ' 2. REGULAR DESIGN
S
1., .::: 2.1 Introduction. In this section we take the model to be
o
LA
O Y= f(i/n) +g(i/n)te;, 1<i<n, (21)
I
e A where f and g are bounded functions on the interval [0,1], ¢ 2 0, and ¢€,¢€z,... are
wing
iy independent random variables with zero mean, unit variance and uniformly bounded fourth
‘:,‘::i moment. Given v > 0, write (v) for the largest integer strictly less than v. We say that
[\) .
RO a function a, such as f or g, is v-smooth if (i) derivatives a(®,...,a(? exist and are
W ":
‘,- ‘ bounded on [0,1}; and (ii) a{*) satisfies a Lipschitz condition of order ¥ — (v) on [0,1}:
2
i -
\_5': la“y))(:) - a((y))(y)l < CII - y]v ) ’ all I,y € [01 1] .
e
n{.
' " A function with k bounded derivatives on [0,1] is k-smooth.
o In subsection 2.2 we show that if f is v,-smooth and g is v;-smooth, then kernel-
.ﬁ
‘ i:" type estimators of g converge in mean square at rate max(n=2v2/(2v2a+1) p—4n/(2n+1))
| .:(‘4. Subsection 2.3 demonstrates that if the errors ¢; are Gaussian then this rate is optimal, in
i D the sense that no estimator can converge to g more rapidly in mean square. Subsection 2.4
v,
S
_.}: treats the case v, = oo, which amounts to postulating a parametric model for g.
‘ i"-! -
‘ -l
Y 2.2 Kernel-type estimators. We begin by defining an analogue of a kernel sequence
;,E; for regular designs. Suppose 0 < h < 1, and m 2> 0 is an integer. Let ¢ = cx(h,m),
2
|
o
p
e M, R AR R R R R R AR D R R R R R N O
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—oc < k < o0, be constants satisfying

ekl SCh,ex =0 for |[k|>Ch™', T =1

| (2:2)
and Tik'cy, =0 for1<i<m,

where the constant C does not depend on k. Then T |k|®|cx| < 2C°*2h~ for each a > 0,
and T2 < 2C3h. The ci’s may be constructed starting from a smooth function K,
vanishing outside the interval [~1,1] and satisfying [ K(z)dz = 1, [2*K(z)dr = 0 for
1 <1 < m. Minor adjustments to K, giving a new function K say, ensure that at least
for small h, ¢4 = hK,(hk) yields an appropriate sequence of constants. For example, if
m =0 or 1, take K to be a bounded, continuous density, symmetric about the origin and
vanishing outside [-1,1]. Define x(k) by x(h)~?! = TxhK(hk), so that x(h) — 1 as h — 0.
Then ¢ = x(h)hK(hk) satisfies qur conditions on ¢;.

Next we define an estimator of f. Suppose the data ¥;, 1 < i < n, are generated
by model (2.1). If the mean function f is v;-smooth, choose a sequence of constants

aix = cx(hy, {11)) satisfying condition (2.2), and put
f(i/n) = TiarYiqr, 0<i<n, (2.3)

where Y; is defined to be zero if j < 1 or j > n. Use linear interpolation on f(:/n) to
construct f(z) for general z € [0,1]. We show in Appendix (3) that if f is v,-smooth and

g is bounded, and if h; — 0 and nh; — oo as n — oo, then for each 0 < § < %,

sup |Ef(z) — f(z)| = O{(nhy)™™}, (2:4)
§<r<1-6
sup var {f(z)} = O(h;). (2.5)
6<z<1-§

Therefore the mean squared error of f satisfies

sup  E{f(z) - f(2)}* = O{hy + (nhy)2"1} , (2.6)

6<zr<1-6

which is minimized at O(n=2*1/(2¥1+1)) by choosing h; to be of size n—2¥1/(2n1+1)

0

( BUGHOGON0N 0 sty
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Now we construct estimators of g. The estimated residuals are

fi=Y;~ f(i/fn), 1<i<n.

-
Pl T e
P

=

Our hope is that 7; will be close to the “true” residual, r; = ¥; ~ f(i/n) = g(i/n)}e,. L

R (Define r; = #; = 0if { < 1or i > n.) Of course, r? admits the model type (2.1):

2

R ri =g(i/n)+g(i/n)ni, 1<i<n, (2.7)
b

!'. -n

where n? = €? — 1 are independent and identically distributed with zero mean. If the ri'’s

were observable, we could estimate g from {r?} in exactly the same way that we estimated

e ]
"'

w
*.

u,:EE f from {Y;}: assuming g to be v,-smooth, choose a sequence of constants by = ci(h3, (12))

Ay
"' : satisfying (2.2), and put
e

.{v‘: -~y _ 2 .
oo g(i/n) = Tibyriyy, 1<i<n.
S
T
£ Construct g(z) by linear interpolation. We see directly from (2.6) that if h; — 0 and
o
'::, : nhy — oo then
) . P -—
g sup E{j(z) — g(z)}* = O{hy + (nh2)~?"} . (2.8)
‘! - » . 65251—6
. Of course, § is not a realistic estimator, since the true residuals are not observable. If
M
\,,,.3 we replace true residuals by their estimates we obtain the practical estimator,

O
2

® . §(i/n) = Tibil,, 1<i<n,. (2.9)
e
~§W Construct §(z) by linear interpolation. We show in Appendix (ii) that for each 0 < § < 1,
) $Q7

ﬁ { .

. sp  E{j(z) -~ 9(2))? = O[{hs + (nho) ™™} + {hy + (nh1)™*}7] . (220)
i 6<r<1-6

el
o

",'- The second term on the right-hand side of (2.10) distinguishes that expression from (2.8),
1IN ’

S and is a consequence of our imperfect knowledge about f. Notice that it is the square of
:E:{, the right-hand side of (2.6).
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}:E':: To optimize the rate at which the right-hand side of (2.10) converges to zero, choose

b0

_:‘:!2 h; of size n=2%/(2%+1) for { = 1 and 2. Then

ol

o sup E{§(z) — g(z)}? = O{max(n=2"2/(22+)) | p=4vi/(2ni41)y} (2.11)

}‘\.« §<z <16

g

"—"j.. A necessary and sufficient condition for the term in v, here to dominate, is 41, /(2v; +1) >

i )

':Sé':?‘ 2v2/(2v; 4 1), or equivalently,

ot

:

2 ) . v1 2 1 /{2(r, +1)}. | (2.12)

el

‘. .' : Should this condition fail, the rate of convergence of § to g is limited by smoothness (or
N

_:5 ..: more correctly, lack of smoothness) of f, not by smoothness of g. On the other hand, if

At

° (2.12) holds then the rate of convergence of § to g is determined by smoothness of g. Note

E‘% that v, /{2(v; + 1)} < 1 for all v, > 0, and so condition (2.12) is assured if v, > 3 — that
> - I

*,;{ is, if f has at least “half a derivative”.

. 0y

2.3 Optimal rates of convergence. Let C(v, B) denoted the class of v-smooth functions

1% ) '

E? a:[0,1] = IR, such that sup |a")| < B for 0 < j < (v) and

%‘5

eV (z) ~ aOD(y)| < Blz —y|~*, allz,ye[0,1).

O

N

Y

' :'5 Write C, (v, B) for the set of a € C(v, B) with a > 0. We showed in Subsection 2.1 that if
b ‘

; 7N f € C(v1,B) and g € C4(v2, B), then we may construct a nonparametric estimator § of g
]

such that

sup  E{§(z) — 9(2)}? = O{max(n=2:/(¥1#1)  p=tn1/(n+1)y
6<z<1-¢

~ . '-,_#..,. ,.
2Dy

N for cach 6 € (0, 7). See (2.11). It is a simple matter to sharpen our proof of this result so
. ~‘
: "‘:: that it applies uniformly in f and g:
S
.l &
® sup sup Eyg{d(z) - 9(z)}? = O{max(n2+2/v2+1) | n=4v/@nt))}
e J€C(11,B),9€C4 (v2,B) 6<2 <1~

)
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DEN)
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o
R 6
o
‘_‘.-"": We claim that this rate of convergence is best possible, in the following sense. If § is any
".‘ [
ﬁ-' nonparametric estimator of g, if 0 < zo < 1, and if the errors ¢; are Gaussian, then for
:;'.:, some C > 0 and all sufficiently large n,
%
A
:.: & M= sup Ey,,{f}(zo) - g(xo)}z > Cmax(n—2m/(2va+l) , n-—(u;/(?u;-}'l)) .
At J€C(v1,B),9€C4(v2,B)
IQ : (2.13)
e . -~ :
ol This statement is a combination of two results, declaring that
[/
?‘&;
i M, > Cn=2%:/C@n+D) (2.14)
( . 2
W and
.
1.:,‘:.. —dvy [(21141)
::: | M, > Cn™*1 /%" (2.15)
. . . . 13 . .
& respectively. The first of these inequalities has a relatively simple proof, which we now
! f\i‘\. outline. Take f = 0, so that we observe the “true” residuals r; = g(i/n)¥¢;. The sequence
-y
N r?,...,r2 is sufficient tor g. Therefore the problem is that of estimating g under model
k
: ; < (2.7). Techniques described by Stone (1980) are easily modified to produce the inequality
Ne ,
\lf
g sup  E,{(z0) — 9(20)}? 2 Cn=3/Cr3D) |
!:k gEc-l'(y?lB)
P~ where § is any nonparametric estimator of g based on r?,...,r2, and where f = 0. This
+ .
_ ;,. gives (2.14). Appendix (iii) presents a proof of (2.15).

2.4 Parametric model for variance. In some circumstances it is appropriate to consider

a parametric model for g, such as g(z) = exp(cz + d). As far as rates of convergence go,

el
Ll el

this amounts to taking v, = 0o in the preceding work, as we now relate.

2.
‘ d Suppose g has known parametric form. If f were available we could compute the
o “true” residuals r; = Y; — f(i/n), and from them compute an estimator § satisfying

- .\ -

E{g(z) — g(z)}? = O(n~'). More practically, assume f is vy-smooth and compute our

- -~ -
S SR 5
ot

Ve

kernel-type estimator f, defined at (2.3). Calculate the estimated residuals 7; = Y.-—f(i/n).
:3‘:::' Since the constants a; in (2.3) vanish for |k| > Chy? (see (2.2)), we avoid “edge effects”
O

R

'.'. J .
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by using only those #;’s with Ch;? < i < n—Cij'. Modify § by (i) including only these

-

Ty
»

P
- 4 %
P l:i: P4

T

indices 1, and (ii) replacing r; by ;. Call the new estimator §. Then for each 0 < 6 < 1,

sup E{§(z) - g(z)}? = O[n™" + {hy + (nh)) > }?] . (2.16)
6<z<1-§

Yy

This is an analogue of (2.10). To optimize the rate of convergence of the right-hand side,

Py

o1 choose h,; to be of size n=2*1/(2214+1)  obtaining
IhTn
LA
" sup E{§(z) — 9()}? = O{max(n~?,n~4"/(21+1)y} (2.17)
G 5<z<1-6
4 .l
i- 2 This is just (2.11) with v, = oo.
o A necessary and sufficient condition for the n~? term to dominate the right-hand side
o
. . s . . .
s of (2.17), is v; > 1; this s just (2.12) with v, = co. If 1} < 1, or equivalently if f has “less
L -
2N than half a derivative”, then estimation of even a parametric g is a nonparametric problem
®
-.i-i with nonparametric rates of convergence. When vy = 1, E{j(z) — g(z)}? = O(n7?),
:::' although constants C; and C; in asymptotic formulae such as
P
N . - ) _
‘ E{§(z) — 9(z)}* ~ Ci(z)n?, E{§(z) - 9(z)}* ~ Ca(z)n™?
oo
e can differ. But when 1 > %, our imperfect knowledge about f vanishes from the asymp-
- -
‘e totics, and
&% .
o) E{g(z) - 9(2)}* = {1+ o(1)}E{§(z) — 9(2)}* = O(n™") (2.18)
w3
}
e as n — o0o. (This result bas an analogue in the nonparametric case, when v; > v /{2(v2 +
L
H‘
o D}
o - It is tedious to verify all these formulae in the general case, owing to the wide variety of
Aoy
’-Zj possible parametric models and associated estimators. We treat only the case g = g(z) =
”
. 0? (constant) on [0,1). Here, § = n"1Z;<i<ar? and, with m denoting the smallest integer
'_. greater than Ch;'],
: ‘;: n—-m<1] n—m+1l n—-m+1l .
: g=(n-2m) Y A=(n-2m) Y A4m-2m) S {f(i/n)
:.'O.o i=m t=m i=m
|.hf n-m+l
R = J(i/m)Y +20¥(n-2m) 37 € f(i/n) ~ f(i/m)} -
:q? iI=m
i
@
h.;.'0
‘uh
'\:.:;
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Writing B; = Ef(i/n) — f(i/n) for bias, and gm = (n — 2m) ' Tpncicn-m+172, We obtain

(9 - .¢jlm)2 <Cn”? [( -E"S“ 32) {" i+l(2kakfu+k) }

(" fl B; 6.) + {ng::(zkakfi“)}z] :

Now, |B;| = O{(nh;) 2**} uniformly inm <i<n-m+1, and so
E(§ = Gm)’ = O[{hs + (nh1)™"'}’] + o(n7") .

Results (2.16)—(2.18) follow from this formula.

The lower bound (2.13), this time with v, = oo, continues to hold in parametric
circumstances such as the one above. In fact, our proof of (2.13) in Appendix (iii) is

applicable to the parametric case.

3. RANDOM DESIGN

We now consider kernel regression estimators in the rapdom design case. Let h be the
density of the design. Typically, whén h is known it is relatively easy to show that the
L? rate of convergence satisfies (1.2). We concentrate instead on the case of an unknown
design density. Under (2.12), we show that one can estimate the variance function g as
accurately as though f were known.

Observe independent pairs (Y;,z;), 1 < ¢ < n. The z,’s have common density h, and
given {7}, Y; = f(z;) + g(zi)}¥¢;. The ¢,’s are assumed to have mean zero, variance one,
and uniformly bounded fourth moments. Given v > 0, define (v) and “v-smoothness” as
in Subsection 2.1. Assume f is v;-smooth and g is v3-smooth, where v; > 0 and v, > 0.
Suppose that, uniformly in a neighborhood of z¢, the density d of z is {max(v;,v;)}-
smooth and bounded away from zero and infinity. For j = 1,2, let K; be continuous
functions with support [-1, 1}, integrating to one, uniformly Lipschitz continuous of order

one, and with i'th moment equal to zerofor 1 < i < (v;). Let h; = n=1/%+) for j =1,2.
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Define

dj(z) = (nhy)™ ZA {(zs — 2)/h;}, dii(z) = (rhy) ) Ko {(zi — 7)/h1) -

k#i

A kernel regression estimator of f is
fiz) = (k)™ VK {(zx — 2)/M}/d1i(x) .
k#i
If the mean function f were known, a kernel regression estimator of ¢ would be

§(z) = (nh) ™' Y _{Yi - f(z:)Y Ka{(zi — 2)/h2}/da(z) .

=1

If f is unknown, the natural analogue of g is

§(z) = (nh2) ™ Y {Yi - fiz)Y Ka{(zi — 2)/h2}/ds(z) .

i=1
Classical results on kernel regression function estimation may be used to prove that

15(z0) — g(z0)| = Op(n~*2/(2va+1)); this is the analogue of (2.8) for an optimal choice of
window size hz. In analogy with (2.11),

|3(z0) — g(z0)| = Op{max(n™*2/@s+) p=2/Gratiy} (3.1)

As in Section 2, a necessary and sufficient condition for the term in v; here to dominate,
is vy 2 vo/{2(vs + 1)}. If this inequality is strict then § is asymptotically equivalent to

the “ideal” estimator g, in the sense that
1§(z0) = (zo)| = op(n™"2/+42) . (3.2)
To prove (3.2), first observe from Stute (1984) that

sup {|dj(z) ~ d(z)|} = Op(n~"/C*i*V logn)

lz—~0l<e
for some ¢ > 0. From this it follows that -
sup  max [dyi(z) — d(z)| = Op(n~1 /1D Jogn) . (3.3)
lz—z0|<c

[y ... ..'
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: Therefore to prove (3.2) it suffices to show that
i .
'&‘ max(lA,,I, IBnI) = op(n-V:/(Qv:+l)) , (3.4)
‘ﬁ where
v . .
s An = (nh)™ Y _{fi(2i) = f(2:)Y K2{(zi ~ z0)/ha} ,
1] =1
fl n )
LS B, = (nhe)™' Y g(zi) e fi(zi) — f(zi)} Ko {(zi — z0)/h2) .
ol i=1
:' Appendix (iv) sketches a proof of (3.4).
% The rate of convergence described by (3.1) is optimal. In fact, if the density d is
o fixed, if C(v;, B) and C4(v2, B) are the function classes defined in Subsection 2.3 but with
P
k< interval [0,1] replaced by (—oo, 00), and if g is any nonparametric estimator of g, then for
o
i- some C > 0,
r liminf sup Py5{18(z0) = 9(zo)| > C max(n™*2/(Gs+1) n=21/(2141)))
04 et ]EC(V:,B),QGC+(V§,B)
4
g >0.
/ - This is an analogue of (2.13), and has an almost identical proof.
i ; All the results above have versions for parametric estimation of g, corresponding to
.
! v2 = oo. In this circumstance we usually do not require parametric knowledge about the
% design density d, since parametric estimation of g does not involve estimation of d. It is
! usually sufficient to ask that d be v,-smooth.
1 ’ .
f
' ACKNOWLEDGEMENT
[ q '
3 The work of R.J. Carroll was supported by the U.S. Air Force Office of Scientific
‘o
K Research and performed while visiting the Institute of Advanced Studies at the Australian
)
. National University.
4
L/
L Appendix (i): Proof of (2.4) and (2.5).
' Since- f is defined by interpolation from f(i/n), it suffices to show that
h
\ sup  |Ef(i/n) - f(i/n)] = O{(nk)™}, sup var{f(i/n)} = O(h;). (A1)
) én<i<n-6én n<i<n-é6n
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by Observe from definition (2.3) and properties of {ax} that

- Ef(i/n) — f(i/n) = Txax({))) 7 (k/n)*D [ FD(@ + 6k /) — FEC 0 (i/n)),

! i where 0 < 6, < 1. Since f is v3-smooth then [f(1)(z) — flN(y)] < G|z — y|»~ ),
« from which it follows that

bt Ef(i/n) — £(i/n)] < CrExl(k/n)*ag| [k/n]s =)

[

'.' = Cin M i k" lak]| < Co(nhy )™,

r which gives the first part of (A.1). The second part follows from
R var {f(i/n)} = Zalg{(i + k)/n} < (supg)Sa} = O(hy) .

@ Appendix (ii): Proof of (2.10).

b

; 3:3 _ Put D; = Ef(i/n) — f(i/n), Ai = Tearg{(i + k)/n}}eiyx. Then 7 = g(i/n)le; ~
D; - A, so that §(i/n) — g(i/n) = T1<;<6S;, where

o
t It
\.f': S1 = Sibig{(i + /nH € - 1), S2=TibiDY,, Ss =LAl
e \
::3 54 = —221b;g{(i + 1)/7’1}%D.'+16,'+1 ’ 55 = —221b(g{(i + I)/n};'c,-.”A.-.,.l )
i
o) ‘ Se = 25101 Diy1Bigr -
";ﬂ.

g
a0 It suffices to show that

Y
o

L) sup [{ESJ(I')}2 + varSj(i)] = O{hy + (nh2)~22 4+ k2 4 (nh;)™*"1} . (A.2)
;.: fn<i<n—6n,1<;<6
o
'f.: Observe that E(S;) = 0 for j = 1,4 and 6; |D;| = O{(nh;)~"1}, by (A.1); E(A}) =
% O(Za?) = O(h,); and E(g;A;) = aog(i/n) = O(hy). Therefore E(S;) = O{(nh;)"?1},
o

‘.: E(S53) = O(hy) = E(Ss). Hence, each (ES;)? admits the bound claimed in (A.2). Trivially,
Q var (5;) = O(Z8?) = O(hs), var(S;) = 0, var(S,) = O(Tb]) = O(hz). Furthermore,

N

“ E(Sg) =X, Z,T, ... Zrbibrax, .. - ak, [9{(i +h+hk )/n}g{(’. +4h+ k2)/n}

o . .

i3 x g{(i + b + ks)/n}g{(i + b+ k)/n)] Bleisn an €ist s baei b ka€iian,) -

M

G

l‘q"

L

o

g ! :
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]2.
The expectation on the right-hand side vanishes unless either k; = k; and k3 = ky; or
L —la=ky—ky =ky—ky;orly —1lp =ky —k; = k3 — ky. In the first case, all nonzero
terms except those corresponding to k; = ky = k3 = ky, cancel perfectly from the difference
E(S2) - (ES3)?; end in the second and third cases, once I3, 12, k) and k; are given, k3 and

k. are completely determined. Therefore, since |ax| < Cyhy,

var (§3) € C2(Z1, T1, Tk bt bi,ax |k + S1, T1, S, Tk, by, b, 0k, ax, |R3)
= O(h?).

Similar but simpler arguments show that var (Ss) = O(h3+hy), var (S¢) = O{hy(nh,)"2"1} ]
Hence, each var(S;) admits the bound claimed in (A.2).

Appendix (iii): Proof of (2.15).

We may assume that 13 < 3 and v; > 1, for otherwise (2.15) follows from (2.14). For
simplicity we further suppose that B > 2. Let ¢ be a nondegenerate, twice-differentiable
function on (—o00, 00) satisfying (z) = Oforz < 0andz > 1, and sup |¢'| £ 1. Fixe; > 0,
and write my, m for integers such that m; ~ ¢;n?*/®*+) m m < nand mym ~ n. Then

m ~ ¢gIn}/+1), Put §; = m;/n and § = 62**. Let I,..., I, be a sequence of 0’s and

1’s, and define f = f(- | I1,...,Im) by

FI{G = V)my + j}/n] = 6 Li(j/nby) H1<i<mand1<j<my,

(A.3)
" f(z)=0 ifz<0orz>mm/n.

Write F for the set of all such f’s. Define constant functions go = 1 and ¢; = 1 + c,6,

where ¢; # 0, and let G = {go,g1}. For large n, ¥ C C(v,,B) and G C C;(v2, B).

We claim that if 0 < z¢ < 1 and § is a nonparametric estimator of g,
sup  Ey{d(z0) — 9(0)}? = Cn~tn/Gn41) (A4)
JeF g€C

where C > 0. It suffices to prove this result for estimators which are functions of Y; for

t <mym. Let I;,..., I,, be independent symmetric 0-1 variables, independent also of the
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b 13
13
;:o €¢;’s. For these I;’s, write f* for the (random) function defined as f at (A.3), and let J
K

f::g denote the likelihood ratio rule for discriminating belween the hypotheses
g Ho:Yi= f*(i/n) + goi/m)¥er, Hy:Yi=f(i/n) + qa(i/m)}ei .

"

o - .

o Define J = 0 if |§(x0) — g0(z0)] < |§(z0) — 91(70)], and J = 1 otherwise. Write P; and E;
‘ for probability and expectation under H;. Then
L
s sup  Eyo{§(x0) — 9(70)}* 2 max Ei{g(z0) ~ 9i(70)}?
I JEF ,9€C 1=1,2
‘" > (}c26) max{Py(J = 1), Pi(J = 0)} 2 }(c26)*{Po(J = 1) + P,(J = 0))
- > L6 {Po(J =1) + P(J = 0)},
I.'

::, by the optimality of the likelihood ratio rule. Therefore (A.4) will follow if we prove

0“
: liminf Po(J = 1) > 0. (A.5)
3 n—o0

2 .
\ ﬁ Let (g, H) denote either (go, Ho) or (g1, H1). Hk=(—1)m; 4+ j where1 <i<m
, and 1 < j < my, write Yj; for Y and ¢;; for ex. Assuming standard normal errors ¢;;, the
p likelihood of H given Yj,...,Yn,m is proportional to
b 1 1
b L(H)= g~m™m/ H(eXP (— 39712 Y.%-) +exp [—%g" > Y- 6*¢(j/n61)}’]) :

~ i=1 J=1 J=1
- If Ho is true then

£ L(H)=g~™ "/ exp(-1g7 ' T:Tjel;)

x TL; [exp{—1Ii(d; + 2d} Ni)g™'} + exp{—1(1 - L,)(dy ~ 24} N:)g™1}]

o
E' where d; = 6Z;9%(j/né) ~ d = 3" *! [¢? and N; = d;*aiz,-w(j/na, )ei; is standard
:' normal. Therefore, using the symmetry of Ny,

L)
$ R = 2log{L(H,)/L(Ho)} = mym(1 - g; " +logg;!) —2(g;! — 1)mD + o,(m;mé* + mé),
¥ where D = E[{1 + exp(1d + d} N1)}~1(1d + d N1)]. Note that )
¢
.

3 lg* = UIS:B;(el; — 1)] = Op{(mimé®)}} = op(mimé?) .
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Chzose ¢y so that D # 0, let ¢3 > 0 and put ¢2 = c3sgn(D). Since g; =1+ ¢26 then

‘ R = —1mm62c{1 + 0,(1)} + mécs|DI{1 + 0,(1)} -

§ Choose c¢3 so small that ¢, = ¢3|D| — %cf"”‘“cg > 0. Then R ~ ¢gmé — o0, so that
A Po(J = 1) — 1, proving (A.5).
\

W Appendix (iv): Sketch proof of (3.4).

Let s(z) = f(z)d(z) and 3i(z) = fi(z)dyi(z). Assume v; > 12/{2(v2 + 1)}, and put
3
( €n = max(n~211/(2n1+1) n=2v3/(2v3+1))(]og n)2. Equation (3.4) will follow if |A,| = Op(£n),
o {Bgn| = Op(€n)- Dropping the argument z,

§ . A
h \
4.

fi= f = (5i — 8)/d = (3i — s)(dri — d)/(ddy;) — s(dr; — d)/(dd);)
= (3 — s)/d — (3i — s)(da; — d)/(ddy;) - s(dr; — d)/d*
+ s(di; — d)?/(d?dys) - (A.6)

ensa @ '

- . .
[ ) P

For A, note that

.

X

7
2

(Fi = £)? S 10{(8i — s)*/® + (3; — 8)*(dyi — d)*/(ddy;)? + (s/d)*(dy — d)?/d5;} .

This bounds A, by the sum of three terms, say Apn1, An2 and An3. By (3.3), Ans = Op(€n).

O 2

If we show that An; = Opy(€n), the same easily follows for A,z by (3.3). Define

e

. vi(2:) = (nh1) ™Y _{f(x2) = fz)} K {(zx — i)/B1 }/d(z3)
) ki |

5 va(2:) = (nh1) 7 Y g(zx) ek {(za — 2}/ M } fd(z3)

::.' ) k#i

o va(z;) = f(zi){dri(zi) — d(z:)} /d(z) .

Fa s

Since Yi — f(z:) = f(z&) — f(z:) + g(z&)} €& then An1 < Anni + Ani2 + Anis, where

Anyj = 10(nb3)™1 D | Ko {(zi — 70)/62} |03 (i) -

=1

e ._’:‘ Py

By (3.3) for the last and moment calculaticns for the first two, it is seen that each Apy; =
:’. 0?(6")
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To study By, split it into four terms Bpny + Bnz + Bn3 + Bny based on (A.6). Using
(3.3), Bng = Op(€n)- Since EB,3 = 0, one proves that B,z = O,(£,) by showing that
var (Bn3) = O(£2), which is an easy calculation. For B,; apply Cauchy-Schwarz, (3.3) and
the arguments used to bound Ay, to show that B,y = O,(£,). This leaves us to study

By,1. Now Bgy = Bun + Bniz + Bnis, where

Buyj = (nk2) ™'Y glzi) eika{(zi — o)/ h2}vs(xs) .

=1

Each of these random variables has mean zero and variance O(£2), completing the proof.
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